鲜花( 19) 鸡蛋( 0)
|
this answer is the good one.7 _* @* G9 d) b n
4 `4 f( v1 h' z" F4 F
5 J" |+ G5 R2 e f+ C0 s
procedure:" M4 g% ^. K* E9 }& h5 Y
# D# F0 ^8 S2 I" `) e; uFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s
4 t: p* Y U9 O2 s6 @so:; [% Z- G( c3 B5 D% \4 |4 H( _3 [9 N
7 a' h! v8 i! _, J1 q; A% n7 W1 h
bC(x) + (a+bx) dC(x)/dx = -kC(x) +s+ N' j0 v$ ~$ q: Z/ v7 q3 R
i.e.8 X |) t5 L3 v) s- c ]" I' t' E
* R% x, u; O% ]0 |
(a+bx) dC(x)/dx = -(k+b)C(x) +s) F5 H9 l7 @8 s& ] R4 I# T: f& _
" u0 }' J2 h$ ? K0 q
0 M: [ z& h8 p4 V0 A3 @
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b) ' n5 g9 T' }4 f6 m% P; H+ S
which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx
& k1 y, R+ c S6 |9 ^1 n: ptherefore:1 [3 K" S$ V$ |% x7 j+ s
, O0 `* _! H. P# {% w
{(a+bx)/K} dY(x)/dx=Y(x)
3 b/ u6 u$ \/ J% b6 P) u! f) @1 S" a1 F# f
from here, we can get:! l) }/ b$ V" l" @% g
1 q, q, n) g0 Q: Y' `0 o; ^8 v5 n
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = {K/b(a+bx)}d(a+bx)
- ?9 x' Q8 ~% A8 L: E7 o8 z" B! S+ l8 {+ J
so that: ln Y(x) =( K/b) ln(a+bx)( N- c; [" E) c; Q
+ x6 T$ t# c- R( i- _0 J
this means: Y(x) = (a+bx)^(K/b)0 L# \! \" z( ^* _# p
by using early transform, we can have:$ Z+ K4 I3 V/ f
8 }0 `$ p2 ?( h, w, W-(k+b)C(x)+s = (a+bx)^(k/b+1)+ s8 M- ^8 z) j/ u" a# Q
% ^+ ?. G, c9 X1 C3 Q' b, ]$ Tfinally:& l( `/ g6 @, W7 v
( N) t+ r; i# p/ r: g' wC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|